جستجوی این وبلاگ

درباره من

سلام به وبلاگ من خوش آمدید

تعيين اندازه ميدان مغناطيسي ستاره اي نوتروني

تعيين اندازه ميدان مغناطيسي ستاره اي نوتروني
براي اولين بار ميدان مغناطيسي يك ستاره نوتروني به شكل مستقيم تعيين شد
با استفاده از رصدخانه پرتو X آزانس فضايي اروپا موسوم به XMM-Newton ، اخترشناسان اروپايي موفق شدند براي اولين بار و بدون واسطه ميدان مغناطيسي يك ستاره نوتروني را مورد سنجش قرار دهند و ديد دقيق تري نسبت به اين موجودات راز آلود كيهان به دست آورند.
ستاره هاي نوتروني اجرامي بسيار چگالند . اين ستاره ها با جرمي معادل خورشيد در كره اي به قطر 20 تا 30 كيلومتر فشرده مي شوند و جرمي با چگالي بسيار بالا را توليد مي كنند. ستاره هاي نوتروني حاصل انفجارهاي ابرنواختري است. پس از آنكه لايه هاي ستاره در اثر انفجاري مهيب در فضا پراكنده شد بقاياي ستاره اصلي به شكل قلبي چگال باقي مي ماند و ستاره نوتروني را تشكيل مي دهد ستاره اي كه با آهنگي غيرقابل تصور به دور خود مي چرخد.
اين گونه اجرام اگرچه خانواده اي آشنا ازاجرام كيهاني به حساب مي ايند اما به شكل فردي و تك تك اطلاع اندكي از آنها در دست داريم.اين اجرام در هنگام تولد دماي بسيار بالايي دارند و تابش قوي از خود ساطع مي كنند اما پس از گذشت زمان با سرعت حرارات خود را از دست مي دهند و به همين دليل تابشهاي قوي خود نظير تابش در محدوده پرتو X را از دست داده و در طول موجهاي راديويي به تابش مي پردازند و به همين دليل است كه براي بررسي آنها بايد از اين طول موجها استفاده كرد. تنها تعداد اندكي از اين اجرام تابشهايي در طول موج X نشان مي دهند.
يكي از اين موارد ستاره اي نوتروني موسوم به 1 E1207.4-5209 است كه در خلال طولاني ترين عكسبرداري رصدخانه XMM-Newton كه 72 ساعت به طول انجاميد آشكار شد.با كمك اين تصوير برداري اخترشناسان اروپايي موفق شدند براي اولين بار به طور مستقيم به اندازه گيري ميدان مغناطيسي اين ستاره بپردازند اين در حاليست كه پيش از اين تنها با كمك روشهاي غير مستقيم نظير استفاده از نظريات شكل گيري ستاره هاي پرجرم و يا بررسي آهنگ كاهش دوران ستاره نوتروني (كه با كمك بررسي داده هاي راديويي امكان پذير مي شد) اين ميدان مغناطيسي مورد محاسبه قرار مي گرفت . اما اين بار اخترشناسان توانستند با رصد تابش پرتو X يك ستاره نوتروني اين ميدان را مستقيما ندازه گيري كنند تابش پرتو X پيش از آنكه در فضا منتشر شود از درون ميدان مغناطيسي ستاره نوتروني عبور مي كند و اين ميدان اثر انگشت خود را بر روي اين پرتو باقي مي گذارد. با بررسي پرتوهاي دريافت شده مي توان ميدان را شناسايي كرد . اما نكته هيجان انگيز در خصوص اين ستاره نوتروني جاي ديگري بود ميدان مغناطيسي كه به روش مستقيم مورد اندازه گيري قرار گرفت 30 برابر ضعيف تر از ميداني بود كه روشهاي غير مستقيم اعلام مي كرد ند و اين پرسشي تاز ه را مطرح مي كرد منشا اين اختلاف چيست.
در مدلهاي رايج اندازه گيري ميدان مغناطيسي ستاره هاي نوتروني فرض مي شود كه كاهش سرعت ستاره تنها در اثر ميدان مغناطيسي ستاره و واكنش ان با محيط اطراف است د حاليكه به نظر مي رسد، حداقل در مورد 1 E1207.4-5209 عامل ديگري نيز در كاهش سرعت ستاره نقش ايفا مي كند و آن قرصي از بقاياي انفجار ابرنواختري است كه در اطراف ستاره نوتروني باقي مانده است.
حال اين سوال مطرح اسن كه آيا اين مورد تنها يك استثنا و گونه جديدي از ستاره هاي نوتروني است و يا نمونه اي عمومي از اين خانواده از اجرام آسماني است. بررسيهاي بعدي بايد پاسخگوي اين سوال باشد.
منبع :www.nojum.ir



چوپان مغناطيسي
الكترونها در محيط پلاسمايي مثل گوسفنداني هستند كه در يك مرتع باشند. آنها به اطراف پرسه مي زنند و گاهي به سقلمه اي احتياج دارند تا باعث شود در راه مشخص گله قرار گيرند. چهاردهم نوامبر، يك تيم تحقيقاتي روشي را عرضه كرد كه با آن مي توان ديواري يكطرفه ساخت كه كه اجازه ي ورود الكترونها از يكطرف را مي دهد ولي الكترونهايي كه از طرف ديگر ديوار مي خواهند وارد شوند را مانع مي شود. اين روش جديدي براي به دام انداري الكترونها در محيط پلاسمايي است. اين ايده ما را به ياد "شيطانك ماكسول(Maxwell's Demon)" مي اندازد كه مي گفت فرض كنيد يك ظرف را با تيغه اي به دو قسمت تقسيم مي كنيم و يكطرفش را تا نصف از گاز پر مي كنيم. موجود هوشياري را در جلوي سوراخ بين دو نصفه ي ظرف قرار مي دهيم و او فقط مولكولهاي پرسرعت را انتخاب و به سمت ديگر هدايت مي كند. اين آزمايش نظري عملا غير قابل اجراست اما در اينجا با احتساب اينكه مقداري گرما هدر مي رود مي توان الكترونها را به دقت تفكيك كرد. (مثل همان كاري كه شيطانك جلوي دريچه در آزمايش ذهني ماكسول مي كرد!) قصه اينگونه است كه در يك راكتور گداخت بنام توكامك، محققان ميدان مغناطيسي براي نگه داري پلاسما در يك محل خاص بكار مي برند. يعني پلاسما را (كه مجموعه اي از الكترونهاست) درون ظرفي از جنس ميدان مغناطيسي قرار مي دهند. براي اينكار تعدادي از الكترونهاي پلاسما را در ميدان مغناطيسي مي اندازند كه باعث مي شود اين الكترونها دور حلقه اي شبيه به خانه ي حلزون بچزخند و اين خانه حكم ظرفي را دارد كه درونش پلاسما حبس مي شود. اما اين روش نيازمند اينست كه مقدار بسيار زيادي امواج راديويي به درون پلاسما فرستاده شود كه اين مقدار باعث گرم شدن بسياري از الكترونها و اتلاف گرمايي مي شود. نات فيش (Nat Fisch) از دانشگاه پرينستون (Princeton University) و همكارانش تصميم گرفتند كه انرژي لازم براي ظرف را بجاي اينكه به همه جا بفرستند فقط به يك منطقه ي كوچك بفرستند. اين ايده دو نوع ميدان مي خواهد. اول، يك لايه ي نازك از ميدانهاي الكترومغناطيس نوسان كننده مي خواهد كه بطور عمودي محوطه ي پلاسمايي را نصف مي كند و دوم، يك ميدان مغناطيسي ايستا مي خواهد. الكترونها ترجيح مي دهند كه از ديواره ي قوي و نوساني الكترومغناطيسي فاصله بگيرند بنابراين به عقب برميگردند اما ميدان مغناطيسي روي الكترونهاعمل مي كند و آنها را مجددا به جلو هدايت مي كند(مثل يك درب يكطرفه). نمايي از يك پلاسماي حبس شده در يك توكامك. توضيح كاملتر و واضحتر انست كه فرض كنيد يك الكترون به ديوار نزديك ميشود. ميدان مغناطيسي ايستا كه عمود بر ديوار است باعث مي شود كه الكترون روي مسيري حلزوني شكل به سمت ديوار جلو برود. در نزديكي هاي ديوار فركانس اين چرخش رو به جلو با فركانس نوسان ميدان الكترومغناطيسي ديوار هماهنگ مي شود و باعث مي شود كه الكترونها در جاي مشخصي از مدار چرخششان ناگهاني به سمت داخل كشيده شوند. اين شوت شدگي به سمت ديگر ديواره براي تمام الكترونها در همان جهت وجود دارد. يعني فرقي نمي كند كه الكترون به ديواره از كدام سمت نزديك شود. اگر الكتروني مثلا از سمت ديگر به ديوار نزديك شود، ميدان مغناطيسي ايستايي كه الكترونها را رو به يك سمت هدايت مي كند باعث دوري آن الكترون از ديوار مي شود. بنابراين مي بينيد كه ديوار اينجا مثل شيطانك ماكسول كه به يكسو تفكيك مي كرد عمل مي كند. حالا اين تيم در حال عملي كردن اين ايده هستند تا بتوانند با دو ديوار الكترونها را بين اين دو حبس كنند.